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We carefully analyze the behavior of a numerical solution of the linearized Navier-Stokes 
equations in a problem with a boundary layer. We show that the effect of discretization is to 
increase the viscosity and that oscillations arise only if bad outflow boundary conditions are 
used. Computations show the same effects for the full Navier-Stokes equations. 

1. INTR~DLJCTI~N 

In this paper we determine the accuracy of the computation of a 2-dimensional 
flow with a boundary layer. In particular, we find the solution of the differential 
equation 

ux = ~(%s + $,) (1.1) 
on the quarter plane x > 0, y > 0 with boundary conditions 

u(x, 0) = 0, 40, Y)= 1 
u(x,y)boundedasIxl+lul-fCo. (1.2) 

Then we compare u with the solution of the difference equation 

h,(x + h, u> - u,z(x - h, y))@h) = +,,(x -t h, Y) + u,,(x, Y + h) 

+ u,,(x - h, Y) + u,,(x, Y - h) 

- 4n,(x, Mh* (1.3) 

with the same boundary conditions (1.2). We are interested in the case when v is a 
small positive number. Thus, the solution u of (1.1) and (1.2) is nearly equal to 1 ex- 
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400 HEDSTROM AND OSTERHELD 

cept in a boundary layer near the x-axis [ 8 ). The cell Reynolds number [ lo] for (1.3) 
is R,. = u/z/v, but our formulas are simpler if expressed in terms of the parameter 

P = hl(2v), (1.4) 

which we shall call the half cell Reynolds number. 
In l-dimensional flow it is known [ 10, pp. 16 l-165 ] that if there is a boundary 

layer and if p > 1, then the solution of (1.3) has oscillations. This effect is small for j3 
near 1, and it becomes more pronounced as p increases. In two dimensions this case 
corresponds to the presence of a boundary layer perpendicular to the flow. In our 
case, (1.1) and (1.2), the boundary layer is parallel to the flow, and we find no os- 
cillations of any consequence for any value of /I. The theory does predict the presence 
of highly damped oscillations near the inlet if p > 1, but they are not visible in our 
computations. Our conclusion is that for u from (1.1) and (1.2) and uh from (1.2) 
and (1.3) and for any /I > 1 the difference u - uh is very small except in the boundary 
layer. 

The effect of /3 is most clearly seen in the asymptotic behavior of u and u,,. 
Theorem 2.1 includes the result that as x/v -+ co and y/x + 0 we have 

u(x, y)- erf(y2-‘(vx)-L”Z(1 -y*/(8x*) + O(y4/x4))). (1.5) 

Theorem 3.1 implies that as x/h + co, y/x + 0, and fly/x -+ 0 we have 

u,(x, y) - erf{ y22’(v~)-‘/~(l - (3 + p2)y2/(24x2) + O(y4/x4))}. (1.6) 

Thus, the width of the boundary layer for u,, increases as the half cell Reynolds num- 
ber p increases. 

We remark that we also obtain (1.6) if we use the methods of Section 3 to find the 
behavior in the boundary layer (x/v + co, y/x --, 0, /Iy/x -+ 0) of the solution of 

u, = vu,.,, + v( 1 + 82/3)u,, 

with boundary conditions (1.2). Thus, we have obtained a model partial differential 
equation for (1.3), and it shows that the effect of the discretization is an increase in 
viscosity. We may also obtain this model equation by a perturbation argument, as 
follows. A Taylor series expansion of (1.3) gives 

u, + (h 2/6)u,,, + = v(u,, + uyp + (h2/ 12)(uX,,, + u,,,,) + ). 

If we set y = v”‘z, we obtain the simpler equation 

u, = uzz + v(u,, + (P2/3)UZILL) + O(v2) 

as v -+ 0 with /I bounded. If we use u,, = u,,,, + O(v), drop the O(v2) terms, and 
transform back to (x, y)-coordinates, we obtain our model equation. 
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We can apply a similar argument to the upstream difference approximation. That 
is the difference scheme with the same right-hand side as (1.3) but with left-hand side 

A Taylor series argument yields the model equation 

u, = vu,,,. + v( 1 + p + /3*/3)24,, . 

Again, we see that the discretization increases the effective viscosity. 
The model equation does not tell the whole story, though, because the solution of 

(1.3) actually contains two components, one completely spurious and the other 
modeled by the model equation. The boundedness required by (1.2) eliminates this 
spurious component for the problem on the full quarter plane, but, of course, we com- 
pute on bounded regions. The spurious component is more noticeable when /3 > 1, 
because then it is oscillatory. The elimination of this spurious component on a boun- 
ded domain requires the use of an outflow boundary condition. In Section4 we use 
the ideas of Engquist and Majda [6] to show that the exact outflow condition is in 
terms of a pseudodifferential operator, and there are difference approximations to it. 
Our first and second approximate outflow boundary conditions are discretizations of 

u, =o (1.7) 

and 
24, = vuyy . (1.8) 

It is not so surprising that these are good outflow conditions, and (1.7) is one of the 
outflow conditions recommended by Roache [ 10, p. 1651. In our computations in 
Section 5, we see little difference between the results of using discretizations of (1.7) 
and (1.8). 

We remark that in this paper we have emphasized the behavior of u,, for large cell 
Reynolds number @I > 1). Thus, our work differs from that of Bramble, Hubbard, 
and Thomee [2] and Sapagovas and Skirmantas [ 121, for they show that u - u,, is 
small if both h and p are sufficiently small. 

Finally, we remark that our reason for studying (1.1) in such detail is that it is a 
linearization of the Navier-Stokes equations 

uu, + vu, + px = v(u,, + u,,,), 

uu, + vu, + py = v(v,, + UJ, 

u, + uy = 0. 
(1.9) 

In Section 5 we present results of numerical experiments with a central difference 
scheme for (1.9). We find that here also there are no significant oscillations if the 
main flow is parallel to both the boundary layer and to grid lines and if proper out- 
flow boundary conditions based on (1.8) are used. 
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2. ASVMPTORIC BEHAVIOR OF u 

In this section we represent the solution u of (1.1) and (1.2) as a Fourier integral. 
The integrand has a pole at the origin and a saddle point whose location depends 
upon a parameter. The boundary layer near the x-axis corresponds to the coalescence 
of the saddle point with the pole. The classical saddle-point method of Laplace is not 
applicable in this situation; we use, instead, a combination of the methods of Bleistein 
] 1 ] and van der Waerden [ 13 ] to obtain an asymptotic expansion for U. 

If we continue u across the x-axis as an odd function in y and solve problem (1.1) 
and (1.2) using a Fourier transform in y, we find after a change of variable that 

(2.1) 

where the integral is a Cauchy principal value and p = x/(2v), o = y/x, and 

$(O) = 1 - (1 + 02)“2 + icoO. 

The integral (2.1) may be evaluated explicitly, but we postpone doing that to Sec- 
tion 5. Our aim here is to illustrate a method for finding the asymptotic behavior of u 
in the boundary layer. It is easy to verify that the integral (2.1) does indeed solve 
problem (2.1) and (2.2). 

Let us say a few words about #. The saddle point, that is, the point where 4’ = 0, is 
given by 

8, = iw(1 + J)-“2. 

We wish to extend $ to complex values of 0, so we take the branch such that 
(1 + e2)lj2 > 0 for 0 real, and we cut the &plane on the imaginary axis from i to ice 
and from -i to -ico. Thus, in place of the real line we may integrate along the line 
y= {e:Ime=Ime ,, 1 , provided that we add to the integral the contribution from the 
residue at the pole. In other words, we add 1 to the integral when we move the path 
into the upper half of the e-plane. Since 0, is on the imaginary axis, it is easy to see 
that on y the elevation Re 4(e) takes its maximum value at 0 = 8,. 

Suppose we try the saddle-point method of Laplace, just to see how well it works. 
Note two danger signals: As w-+ co, we have 0, + i, but i is a branch point. Also, as 
CO+0+, we have 0, + 0, but 0 is a pole. Thus, we may use the ordinary saddle-point 
method only under restrictions of the form 

0<w,~0~w,<00, (2.2) 

and it yields [9, pp. 125-1271 

u(x, y) = 1 - exp{p(l - (1 + ~2)1’2)}(21’2(~p)~*‘zw~1(l + ,2)-i/4 + O(P-~“)) (2.3) 

as p = x/(2v) + co with o = y/x as in (2.2). 
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Relation (2.3) is not very interesting because it says only that u is close to 1 when 
p is large and when (x, u) is in a sector (2.2). Actually, we care more about the 
nature of u in the transition region 0 < o < o,,. It is also clear that we do not get 
u + 0, as we should, if we let o -+ 0 in the main terms of (2.3). The cause of the dif- 
ficulty is our careless treatment of the pole. By being more careful, we obtain the 
following result. 

THEOREM 2.1. Let u be the solution of (1.1) and (1.2), and let w = y/x, 
p = x/(2v), and 

A(u) = 2i’2((1 + Cu*)“* - l)“! (2.4) 

Then for any positive w1 and for 0 < cc) < w, and p -+ co we have 

u(x, y) = erf{A(p/2)“*} + exp{-pA*/2} (B(o)p-I” + O(pe3’*)), 

B(o)=(2/n)“2(A-‘-CC-‘(l +0*))“4), 

where O(p-“12) is uniform in w. 

Remarks. It follows from (2.4) that 

A(w) = u - w3/8 + O(u5), w + 0. 

(2.5 1 

(2.6) 

Hence, B(u) = O(u) as u -+ 0, and (1.5) follows from (2.5). We can also show that 
(2.5) reduces to (2.3) as p + co with condition (2.2). In ,fact, this follows directly 
from (2.5), (2.6), and the expansion for the error function [9, p. 671 

erf(z} = 1 - Ci’*z-i exp{-z*} (1 +0(2-l)), Z-+CO. 

Proof of the theorem. We use a combination of a transformation of Bleistein [ 1] 
and the treatment of poles of van der Waerden [ 131. Bleistein’s transformation 

#(6) = -C/2 -I- iA( (2.7) 

takes the integral (2.1) to the standard form 

4x, Y) = ,f" (ni<)- ' g(t) ewkz-G*/2 - iA511 & (2.8) 
--co 

with g(r) = (r/S) de/d& Again, the integral is a principal value, and we have defor- 
med the path of integration. The value of A(u) is chosen so that 

de/d< = -(r - iA)/#‘(B) 

is nonsingular at 8 = 19,. Hence, 0 = 8, maps into 4 = iA, giving (2.4). 
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The van der Waerden [ 13 ] method of treating the pole in (2.8) is to write 

and to integrate formally, termwise. We show in the Appendix that g(r) is analytic in 
a strip which allows us to replace the path of integration in (2.8) by the line 
Im r = A. Thus, we get 

u(x, y) = erf(A(p/2)“‘) 

+ exp{-pA2/2} 5 c,~(z’~))’ r(j+ 1/2)(2/py’+ I’*. 
0 

(2.9) 

Because (2.9) is a classical saddle-point expansion, we conclude from the general 
theory [9, p. 1271 that (2.5) follows from (2.9) with 

B = 2 l”l7 l/2) c,/ni. (2.10) 

The value (2.6) of B is obtained by finding c,. Details are given in the Appendix. 

3. ASYMPTOTIC BEHAVIOR OF u,, 

We now repeat the above analysis for the solution u,, of problem (1.2) and (1.3). 
For problem (1.1) and (1.2) we saw in Theorem 2.1 that there are two natural 
parameters, o and p. For problem (1.2) and (1.3) there is an additional parameter h, 
and this complicates the analysis. The plan of this section is as follows. We first 
represent uh as a Fourier integral. We then prove two lemmas which describe the 
topography of the integrand in the complex plane. Then the section ends with a 
theorem on the asymptotic behavior of u,,. 

We begin by extending u,, as an odd function in y and taking the discrete Fourier 
transform in y, 

z&(x, 8) = 2 Uh(X, yJpik”, y, = kh. 
-cc 

Note that in this setting the Fourier inversion formula is 

u,,(x, yk) = (2n)- ’ SK z&(x, O)eike de. (3.1) 
-r 

The discrete Fourier transform of (1.3) is 

/q&,(x + h, 0) - t&,(x - h, 0)) = G,(x + h, 0) - 2s4,(x, 0) + z&(x: - h, e), (3.2) 
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where 

s(0) = 2 - cos 0 (3.3) 

and p is half the cell Reynolds number, as in (1.4). If /3 = 1, the solution of (3.2) at 
x, = nh is 

for arbitrary b, and for ri = I/s(B). If /3 # I and /I > 0, the solution of (3.2) has two 
arbitrary functions b,(B) and 62(8)r and we have 

zZh(x,, 0) = b, r: + b, rg 

with 

r,, = (-s - (-l)m (s* + p’ - l)“‘)/P - l), m= 1,2. (3.4) 

For real 8 we have ( r2 1 > 1 and 1 r, I< 1, so that the Jh determined by (1.2) is 

Z&(X,, 0) = -i cot (e/2) r;. (35) 

Note that (3.5) is also valid when /3 = 1. Note also that the spurious component b,r; 
simply drops out of this problem. 

We obtain the Fourier representation of u,, by substituting (3.5) into (3.1), 

qJxn, yk) = (2ni)-’ j” c0t(e/2) exp{n(log f-,(e) + ioO)} de, 
-n (3.6) 

co= k/n =yJx,,. 

The function log r,(B) is well defined and real because r,(e) > 0 for real 0. In the Ap- 
pendix we construct a domain R in the strip --x < Re 8 < rc, Im B > 0 such that 

#h(e) = log r,(0) + iw8 (3.7) 

is analytic on 0. This involves the removal of one branch cut if 0 < /3 < 1 and two 
branch cuts if p > 1. The case /3 > 1 is shown in Fig. 1. 

The saddle points of Q,, are the solutions of @;, = 0, that is, 0, such that 

sin 8, = io.@ + si - l)i/*, s,=2-case,. 

(3.8) 

Upon squaring (3.8), solving for s,,, and deleting extraneous roots, we find that there 
is at least one saddle point L$, in R, 

sg = (2 - ((1 + w2)2 + P2w2(1 - w’))“‘)/(l - 02), Uf 1, 

s, = 1 -p/4, 
(3.9) 

u= 1. 
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FIG. 1. B-plane. 

If s,, is real, we see that S, < 1, so that 8, (from cos 8, = 2 - s,,) is imaginary. We in- 
tegrate along the path as in Fig. 1, 

y = {19: -TZ < Re 0 < n, Im 19 = Im 0,}. 

It is convenient to restrict somewhat the range of parameters 0 </I < ok, 
0 < w < co. The case p- 0 has already been treated in [2, 121, so we shall take 
/I >& > 0. (Actually, we could include /3 -+ 0 if we were to use a different set of 
parameters.) If /I > 1 and w is too large, the path of integration y crosses the branch 
cuts. This is actually only a minor technicality, but for the moment we restrict w to 
avoid its occurrence. In Lemma A2 (in the Appendix) we show the existence of a 
function PQ3) such that for 0 < o < P@) the path y does not cross the branch cuts. 
We also show there that P(jI) is bounded away from zero, so that the sector 
0 < w Q P@?) contains the boundary layer. 

Under these restrictions we have the following characterization of the asymptotic 
behavior of u,, . 
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THEOREM 3.1. Let u,, be the solution of (1.2) and (1.3), and let o = y/x, n = x/h, 
and p = h/(2v) with n and y/h integers. Let /3,, be any positive number, and let /3 > & 
and P(J) as given by Lemma A2. Let 0, be the saddle point in 0 given by (3.9), and 
let 

A = (-4W?,))“2, (3.10) 

co = 2(-#~(r30))-“2 cot(6,/2) + i/A. (3.11) 

Then for 0 < o ,< min(o,, P@)), o, any positive number, and for n -+ a~ we have 

~(4 Y) = erf{(-nh(@o))“21 

+ n-“2 exp{n#,(8,)} (-ic0(2/n)“’ + O(n- I)). (3.12) 

Remarks. By making Taylor expansions which are valid as w -+ 0 and /3w + 0, 
we easily obtain (1.6) from (3.12). Note that n = x/h plays the role in Theorem 3.1 
which p = x/(2v) plays in Theorem 2.1. In fact, p is the natural parameter for (1 .l), 
while n and p are the natural parameters for (1.3). 

ProojI Because nw is an integer, the integrand in (3.6) is periodic. Thus, we may 
deform the contour from the segment (-71, n) to the line y through 13,. In doing so, we 
must add 1 in order to account for the residue from the pole at the origin. As in the 
proof of Theorem 2.1 we make the Bleistein transformation [ 11, 

4,,(B) = -C2/2 + iA<, 

with A chosen so that the saddle point B,, maps into the saddle point r = L4 and with 
the branch chosen so that 8 = 0 maps into < = 0. Thus, A is required to be as in 
(3.10). The result of these changes is the representation 

u,,(x, Y) = 1 + 
I 

(nit)-‘g(t) exp(-n(?/2 - i&)1 &, (3.13) 
VA 

where y; is the image of y, in the r-plane and 

g(t) = 25 cot(8/2) de/d<. 

As in Section 2 we see that the function g(r) is analytic at both < = 0 and < = iA. 
Hence, following van der Waerden [13], we may set 

g(t)/<= l/t + f cj(t- iAY’- (3.14) 
0 

We obtain (3.11) from the equation 

co = (g(g) - l)l(iA), 
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together with a Taylor series for c(0) about 8 = 19,. Upon inserting (3.14) into (3.13), 
we obtain the asymptotic series 

uh(x, y) = erf{A(n/2)“‘} + exp{-nA*/2) 2 c2.i(ni)-’ r(j + 9(2/n)j+“*. 
0 

The relation (3.12) now follows immediately, proving the theorem. 
We close this section with a few remarks about the behavior of u,,(x, y) for n --$ co 

with p > 1 and w > P(j?). A detailed description would require the consideration of 
the contribution from making detours around the branch points and from the effect of 
the coalescence of two saddle points as w* o, (from (A4)). The oscillations men- 
tioned in the Introduction arise from these effects. At the very least, we would like to 
estimate Iu,, - 11 outside the boundary layer and show that these effects are very 
small. In the Appendix we show that 1 uh - 11 is even smaller for w > P@) than it is 
for w = P(p). (Note that Theorem 3.1 gives us an estimate of the size of I uh - 1) for 
0 = P(p).) 

4. OUTFLOW BOUNDARY CONDITIONS 

In this section we determine the effect of truncating the domain and imposing 
various boundary conditions at the outflow. The numerical significance of this effect 
is obvious, for we must restrict the size of the region on which we compute. Let uh be 
the solution of the difference equation (1.3) on the strip 

{(x,,yJ: n=O,l,..., N; k=O, 1,2 ,... }, 

subject to the boundary conditions 

Uh(X, 7 0) = 0 (n = 0, l)...) N), 

~,(OY Y/J = 1 (k = 1, 2,...), 

u,,(x,, y,J is bounded as k + co. 

(4.1) 

We do not truncate the problem at some k = K because the effect of doing so is, at 
worst, the introduction of a boundary layer at y = y, like the one at y = 0. 

Let us discuss possible conditions at the outflow x = xN. We shall see that the best 
condition at the outflow is in terms of a pseudodifferential operator as in 161, and we 
give two difference approximations to it. The motivation is as follows. Suppose we 
extend u,, as an odd function of y. Then the general solution of (1.3) satisfying (4.1) 
has discrete Fourier transform 

6,(x,, 0) = b, r; + b, r;, (4.2) 
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where r, and rz are given by (3.4) and 

b,(e) + b,(8) = --i cot(0/2). (4.3) 

(If p = 1, set b, r; = 0.) Thus, it is clear that d, is a truncation of U;, (given by (3.6)) 
to a smaller domain if and only if b, = 0. This situation is realized if and only if 

Because ri is not a quotient of trigonometric polynomials, this exact outflow condi- 
tion cannot be written in terms of differences of v,,. However, if we approximate r,(0) 
by a quotient of trigonometric polynomialsf(B), then the condition 

v;lcv, 8) =f(Q 4&L 12 0) (4.4) 

corresponds to an approximate outflow condition. 
In order to get some idea in what sense f should approximate r,, we first find the 

values of b, and b, determined by (4.2)-(4.4), 

b, = i cot(8/2)/(1 - Q), 

Thus, it follows that 

b, = -i cot(8/2)Q/( 1 - Q), 

Q = (f- r,)Cf- r2)-’ (r,/r2)N--l. 

U;, - V;, = -i cot(8/2) Q( 1 - Q)-’ (r; - r:). (4.5) 

In view of the role of the pole of cot(t9/2) in generating the boundary layer in Sec- 
tion 3, it seems desirable at least to choose f so that Q cot(8/2) is regular at the 
origin. In fact, we shall see in Theorem 4.2 that the condition f(0) # r,(O) gives the 
oscillations discussed by Roache [lo], and we shall see in Theorem 4.1 that we 
should choose f so as to make (r,(B) -f(0)/ small as 0 --t 0. 

It follows from (3.5) that 

r,(8) = i - e2/(2p) + o(e”), e+ 0, 

so that we might take 

f(e)= I ’ (4.6) 

or perhaps 

I/f(e) = 1 + (1 - cos eyj3. 
Condition (4.6) corresponds to 

(4.7) 

(4.8) 
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while (4.7) corresponds to 

Uh(X,V- I% Yk) = %‘(x,, YJ - (W-’ (d% Yk- I) 

- 2u,(x,, Y/J + hl(XN~ Y/c+ I))’ (4.9) 

It is clear that (4.8) is a discretization of (1.7) and (4.9) a discretization of (1.8). 
We now give the theorem on good outflow boundary conditions. 

THEOREM 4.1. Let f be a quotient of trigonometric polynomials such that in a 
strip 

f is analytic, and ( Q(e)1 < l/2. For some positive integer q and some constant C, # 0 
let 

f(B) = r,(0) + C,Bq + O(lf91q+‘), e-+0. 

Let /I,, be positive, and let /J > PO. Let m and w be defined by m = 2N - n - 2 and 
w = yk/(2x, - x,). Then there exist positive constants D and Ci (j = 2, 3,4, 5) such 
that 

(Uh(x,, yk) - Vh(xn, yk)l < C,($w)q~‘/3”Zm~“2 exp(-C,m/3w2} (4.10) 

ifpw<D and 

14h9 Y& - vL(x,, YA < C4expl-C,mwb Dw > D. (4.11) 

Remark. For boundary condition (4.8) we have q = 2, and for (4.9) we have 
q = 4. In both cases the required strip exists. 

Proof Because of the identity r,rZ = (1 + /I)/( 1 -/I), we may write (4.5) in the 
form 

ch _ fi, = -iG(@N-I (,.fN+n-2 _ ,yn,fN-n-2), 

G(0) = cot(f?/2)df- r,)Cf- r&l (1 - Q)-i, 

a = (1 -Ml +P). 

(4.12) 

Thus, the proof of the theorem is reduced to an estimate of the inverse Fourier 
transform 

w(x,, yk) = (2zi)-’ 1% G(B) exp{m(log ri(O) + iwe)) d8 (4.13) 
--II 

for m = 2N f n - 2 and w = k/m. The exponential factor in (4.13) is the same as that 
in (3.6), and again we set @k(B) = log r,(8) + iw8. The conditions on f guarantee that 
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G is holomorphic in R, so that the main difference between (4.13) and (3.6) is that 
(3.6) has a pole and (4.13) does not. If/3w is small enough so that the saddle point 8, 
is in R, we deform the path in (4.13) to the path y, of (A7) through 8,. Thus, we 
may use the standard saddle-point method 19, p. 127 ] to show that for m -+ 00 and 
/ku < D we have 

w= -iG(B,)(2mx 1#:(8,,)l)-“’ exp{m#,(f&,)} (1 + O(m-I)). 

Since by (3.10) we have 0, = ipw + O(,@~J~) as /?cu -+ 0, it follows that for Do < D we 
have @,J&,) < -C,Pw*and I&(S,)l > C/J’ f or some positive C. This proves (4.10). For 
@X > D the proof of (4.11) is the same as the proof of (A14). 

In Theorem 4.2 we see the bad effect of choosing f in (4.4) so that f(0) # 1. The 
most important special case is f = 0, which gives 0,(x,, yk) = 0. 

THEOREM 4.2. Let f be a quotient of trigonometric polynomials such that 
f (0) # 1 and such that in a strip 

f is analytic and 1 Q(o)1 ,< l/2. For some positive PO let p > &, , let a = (1 - p)/(l + p), 
and let 

A = (f(0) - l)(J(O) - I/a)-’ (1 - cP’(f(0) - l)/(f(O) - l/a))-‘. 

Furthermore, let mj = 2N - 2 + (-lyn and wj = k/mj. Then as m, -+ co and j&o, -+ 0 
we have 

uJx,, yk) - vJx,, yJ N AaN-’ (a-” erf{w,(m,P/2)“*} - erf{o,(mJ3/2)“*}). 

Remarks. We see that under the conditions of Theorem 4.2 the difference u,, - v,, 
has a boundary layer near the x-axis. Furthermore, since a < 0 for /3 > 1, the term 
a -’ erf(...} gives rise to grid-sized oscillations. Also, as in (A14) if Do > D, we have 

IUh-vh-~~-‘(a-n-l)(~C~aN-‘(a-“+ l)exp(-C’miw,}. 

This is the l-dimensional effect [ lo]. 

ProoJ: As in the proof of Theorem 4.1, we use the representation (4.12) to reduce 
the problem to one of estimating the integral (4.13). This time, however, G(B) has a 
pole at the origin with residue 2L But we saw how to treat a pole in the proof of 
Theorem 3.1, and the argument used there shows that 

w N L erf{o(mp/2)“* (1 + O@*w2))} 

as m + co and PUJ -+ 0. This proves the theorem. 
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5. NUMERICAL EXAMPLES 

In this section we report on some computations which illustrate Theorems 4.1 and 
4.2. We also show computations for the Navier-Stokes equations (1.9). We begin 
with the linear problem (1.3). 

One advantage of studying (1.1) and (1.2) is that an explicit solution is known. In 
fact, from (2.1) and a table of transforms [7, p. 16, formula (26)] we find that the 
solution of (1.1) and (1.2) is 

u(x, y) = x(vn)-’ exp(x/(2v)} 1.” (x” + .z’)“‘K, {(2v))‘(x* + z~)“~} dz, (5.1) 
0 

where K, is the modified Bessel function of order 1. In our computations for (1.3) we 
arbitrarily chose a grid of size 16 X 28. The mesh size h is arbitrary, and /I = h/(2v) 
is the relevant parameter. We chose h = 1 for convenience. We used boundary condi- 
tion (4.1) at x = 0 and y = 0. At y = 16 (the top) we set uh = u with u given by (5.1). 
Figure 2 shows the values of u,, and u at x = 26 when /3 = 20 and the outflow condi- 
tion (4.8) is used at x = 28. The graph of uh is marked with circles, and the graph of 
u is unmarked. We see that uh has a wider boundary layer than u has. We see no os- 
cillations. In fact, for computations with /I as large as 2500 we saw no oscillations. 
The matrix equation for IA,, was solved by the Yale Sparse Matrix Package ]4,S 1. The 
Bessel function K, in (5.1) was evaluated by the algorithm of Russon and Blair [ 111. 

sectcon x = 26.000 
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FIG. 2. Velocity profile under good outflow conditions. 
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FIG. 3. Velocity profile under bad outflow conditions. 

SectLor x = 22.930 

16.0 7 

413 

FIG. 4. Velocity profile under bad outflow conditions. 
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Flow FLeLd 

u- 1 

h/ 

I--I::_-I_:__j 
I “TO 

‘Y = 40.0 

FIG. 5. Navier-Stokes with h/v = 40. 

We also did computations with outflow boundary condition (4.9) in place of (4.8). 
These are not shown, because we found no significant difference. 

Theorem 4.2 is illustrated in Figs. 3 and 4. We see the large oscillations caused by 
setting u,, = 0 at the outflow x = 28. Again, we are using /? = 20. The boundary 
conditions at the other boundaries are as before, u,, = u at y = 16 (the top) and (4.1) 
at x = 0 and y = 0. Note that the condition u,, = u at the top produces a boundary 
layer there. 

Finally, Fig. 5 shows the flow field obtained by solving the Navier-Stokes equa- 
tions (1.9) using/3 = 20. The artificial compressibility method of Chorin [ 31 was used 
with central differences based on the stencil shown in Fig. 6. The boundary condi- 
tionsusedwereu=1andu=Oatx=O,u=Oandv=Oaty=O,u,=Oandu,=O 
at y = 16 (the top), and discretizations of uu, = vu,, and u, = -u, at x = 28 (the out- 
flow). We see again that the presence of a boundary layer parallel to the flow field 
does not produce numerical oscillations. A computation of the same problem with p 
changed to 250 gave essentially a uniform flow field outside a boundary layer of 
thickness h. 

FIG. 6. The stencil. 
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6. CONCLUSIONS 

We see that in a 2-dimensional computation the cell Reynolds number has two ef- 
fects. First, there is the spurious component which is also observed in l-dimensional 
problems. It gives grid-sized oscillations if the cell Reynolds number exceeds 2. This 
spurious component is greatly diminished by the use of proper outflow boundary con- 
ditions as described in Section 4. Second, there is the numerical viscosity which 
thickens the boundary layer in the computed solution. This is a much smaller effect, 
and we barely see it in Fig. 2, where the cell Reynolds number is 40. 

APPENDIX: MATHEMATICAL DETAILS 

In this appendix we give some of the technical details in the proofs of the theorems. 
These details are applications of elementary complex analysis. 

Notes on the proof of Theorem 2.1 
The detail sloughed over in the proof in the text is the justification of the deforma- 

tion of the path of integration from the real axis in the B-plane in (2.1) to the real axis 
in the r-plane in (2.8) and then to the line Im < = A. This point is resolved by an ex- 
amination of the mapping (2.7). We break up (2.7) into the composition of the two 
mappings 

u = qS(8) = 1 + i0.d - (1 + 0*)“*, (AlI 
u = -<‘/2 + iA<, 642) 

with the branches chosen so that u = 0 and r= 0 when 0= 0. For the mapping (Al) 
we take 19 in the half-plane Im 8 > 0, omitting a cut from i to io3 on the imaginary 
axis. It is easy to see that this region is mapped l-l onto a domain D in the c-plane. 
It also happens that symmetric points (8, -8) with respect to the imaginary &axis are 
mapped into symmetric points (c, -c) with respect to the imaginary c-axis. The 
justification for the movement of the path of integration from the real &axis to the 
real r-axis results from the fact that D contains the sectors bounded by the real {-axis 
and. the image of the real e-axis and from the fact that the image of the ray 
0 < B < co is contained in the sector (arg (1 < 7r/4. Finally, the replacement of the 
real r-axis by the line Im [ = A is justified because D contains the strip 0 ( Im r <A. 

Determination of c0 in (2.10) 

We begin by expanding < as a function of t9, based on (Al) and (A2), 

~=iA+(I+02)3’4(e-eo)+o(e-eo)2, e-8,. 

581,‘?7!3-9 
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Thus, we have 

de/dyIrEiA = (1 + w2)-3’4, 

This together with (2.10) gives (2.6). 

Remark. We did the asymptotics by the method of van der Waerden [ 131 
because that way we know we get an asymptotic series. Other ways to do it are as 
follows. Olver [9, pp. 344-3511 replaces g in (2.8) by 

g(cg = z dj(< - iA)'. 
Bleistein [ 1 ] uses a Jacobi series [ 14, p. 571 

where each R, is a first-degree polynomial in r. These methods are more appropriate 
when the singularity is a branch point. In both cases the formal expansion starts with 
the same error function as in (2.5), but subsequent terms are different. 

Notes on the proof of Theorem 3.1 

We begin by examining the function r,(0) defined by (3.4). We want to deform the 
path of integration in (3.6) into the complex plane, so we proceed to define a branch 
of r,(e). For p # 1 the function r,(0) has two branch points in the half-strip 
] Re B] < rr, Im 0 < 0, located at the roots of 

s2 = (2 - cos e)’ = 1 -p’. (A3) 

If 0 < p < 1, these branch points lie on the imaginary axis, and we connect them with 
a cut on the imaginary axis. If p > 1, the branch points are symmetric with respect to 
the imaginary axis. We then make cuts in the e-plane in such a way that the images 
of the cuts in the s-plane under (3.3) are lines from (/I’ - l)i’* to ice and from 
-iv* - 1)‘/2 to -ioo. See Figs. 1 and 7. Thus, we have a domain L2 in the e-plane on 
which the function r,(e) is analytic. The image of s2 in the r,-plane is the half-plane 
Re rl > 0, minus a cut on the real axis arising from the interval -rt < 0 < n. 

A note on the saddle points of Q,, in l2 

If /I< 1 or o < 1, then (3.9) and (3.3) give the only saddle point in R. However, if 
/I > 1 and cu > 1, then there are two saddle points in .R, the second one obtained by 
changing the sign of the square root in (3.9). Furthermore, these two saddle points 
coalesce at the value of 0 given by (3.3) and so = 2/(1 - wi), if w -+ o, with o, given 
by 

pu,(w: - 1)‘/2= u: + 1. (A4) 
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FIG. 7. s-plane. 

It is clear that (A4) defines b as a decreasing function of LO, for 1 < wi < co. Hence, 
given /I > 1, Eq. (A4) has a unique solution CL+. For o > w, the two saddle points are 
symmetric with respect to the imaginary axis, and the elevation Re #h(e,) is the same 
for both of them. Furthermore, as w--t co, the saddle points tend to the branch points. 

Lemmas on the topography in R 

We now present two lemmas which provide information about hills, valleys, and 
branch cuts to enable us to construct a good path of integration. 

LEMMA Al. For B in f2 let @h(0) be as defined in (3.7). Let 0 </?,, <<Pfor some 
positive /3,,. If p > 1, let w < w, , where w, is the solution of (A4). Then for the saddle 
point 8, given by (3.9) we have 

QZ(4) < 0. 645) 
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Proof: A direct calculation shows that 

f);(e) = (s - 2)@ + s* - 1))“2 - s((2 - s)2 - l)(p’ + s* - 1))3’2 

with s as in (3.3). Hence, (b;(iq) is real for real q. Thus, if 0 = iv is such that 

1 - /3*/4 - p/4)@’ + 8)“* < s < 1, G46) 

we see that $:(19) < 0. For p > 1 and 0 = 0, the restriction 0 < o < o, of the lemma 
is equivalent to (A6). For 0 < j7 < 1 and ~9 = 8, th restriction (A6) is automatic 
because (1 -/I*)“’ < s0 < 1 if s0 = 2 - cos 8,. This proves the lemma. 

LEMMA A2. For /? > 1 let 8, be the branch point 8 given by (A3) with Re 8, > 0. 
LetO~~<a,if~,~~~laandletO~~~Im~,if~~1.Thenonthesegment 

y,={e:Ime=~, -n<Re8<n) (A7) 

Re g,,(0) has its maximum at 8= iv and nowhere else on y,. Furthermore, there ex- 
ists a positive function P(/?), bounded away from zero, such that Im 8, < Im 8, for the 
saddle point B,, of (3.9) if 0 < o < P@) and 0 < p < 0~). 

Remark. The conclusion P@) > o2 > 0 is important in that the lemma implies 
that we may use the saddle-point method for 0 -C PO < /I < co and 0 < w < w2. This is 
significant since the region 0 < o < w2 contains the boundary layer. 

Proof For fixed o let us examine the value on y, of 

Re h,(e) = log I rl - w, 

r = (-s + (s* + j3’ - l)“‘)/(p - 1), 648) 

s = 2 - cos 8. 

It is clearly sufficient to consider the images in the s-plane of y, and of the semicir- 
cles 1 r( = p with Re r > 0. (Recall that our definition of the branch cuts was such that 
Re r > 0 for 0 in LX) In terms of s = u + it the image of y, is the ellipse 

with foci at s = 1, 3. 

(a - 2)*/cash* r7 + z2/sinh2 q = 1 (A9) 

We now determine the image in the s-plane of 1 r ) = p, Re r > 0, under the inverse 
image of (A8), 

s = (p + 1)/(2r) - (p - l)r/2. 

We concentrate on the case /I > 1 because the argument is more delicate then. The 
special half-circle 

(r(=pO= (/I+ l)“*(p- l)“‘, Rer>O, 
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is mapped onto the segment joining the branch points 

sb = fi(j* - l)“*. (A 10) 

For other values of p the image of Irl = p, Re r > 0, is a half-ellipse in the s-plane 
with foci at the branch points (AlO), 

a*/62 +r*/a* = 1, 

b=IP+l-@-l>P211PP)~ (All) 
a = (b2 + 8’ - l)‘? 

See Fig. 7. If 0 < p ( p,, the half-ellipse (Al 1) is in the half-plane Re s > 0. For p > p,, 
it is in the half plane Re s < 0. Furthermore, as p increases, the half ellipses in the s- 
plane move to the left monotonically. 

With this geometric background we are able to determine the behavior of Re #h(B) 
for 0 on y,. First, if r,r is so small that the ellipse (A9) is contained in the half-plane 
Re s > 0, it is clear that Re 4,,(B) has its maximum on y, at 19 = i. (This is what hap- 
pens for O<r,r< co ifO</I<l. Thus, we haveP(P)=co for O<p<l.) Second, 
consider an ellipse (A9) with o-intercept -b with b > 0 and with the condition that 
the ellipse misses the cuts. That is, we require that on the ellipse (A9) we have 
r* <<p’ - 1 when c = 0. One such ellipse is shown in Fig. 7. A direct calculation 
shows that these conditions are equivalent to 

(2 + b)* < Cj3’ + 4 +/3p’ + 8)“‘)/2. 6412) 

On the curve 7, corresponding to an ellipse of this sort Re #,(@ has its maximum at 
19 = iv if and only if the ellipses (A9) and (Al 1) through the point (a, r) = (-b, 0) 
have no other intersection in the half plane c < 0. But, by eliminating r* from (A9) 
and (A 11) we obtain a quadratic for 0, so that ellipses (A9) and (A 11) intersect for 
at most two values of (I. Because the foci for ellipses (Al 1) lie outside of the ellipses 
(A9) under consideration and because the ellipses meet at (u, r) = (-b, 0), it is clear 
that there are two other intersections for some positive value of u. See Fig. 7. (This 
agrument also shows that the ellipses (A9) and (Al 1) do not osculate at s = -b.) 
Thus, if (A12) holds, we see that the ellipse (A9) through s = -b is to the right of the 
half-ellipse (A 11) through s = -6. This shows that on y,, the function Re 4,,(B) has its 
maximum at 0= iv and nowhere else. 

It remains to determine P(J), that is, we need to know the restrictions on o under 
which the saddle points 0, maps into s,, = -b for positive b satisfying (A 12). For 
0 < o ,< o, with w, given by (A4), Eq. (3.9) defines s0 as a decreasing real function 
of w. Thus, the inverse function of (3.9) together with 

(2 - so)* = CJ?* + 4 + /3($’ + 8)“‘)/2 (A13) 

determines a continuous function P(p) for /I > 1 such that y, c R if 0 < (r) < P(/3) and 
v = Im 8,. (We have already seen that the ellipses (A9) and (Al 1) do not osculate at 
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s0 if 0 ,< w < P(p). It is easy to verify that these ellipses do osculate at s,, if w = w, . 
Thus, it follows that P(J) < w, .) 

Finally, we show that P(j3) is bounded away from zero. Since 0 <s,, < 1 for w 
small enough, it is clear that P(p) > 0 for 1 < /3 < co. Thus, in order to prove that 
Pv) has a positive lower bound, it suffices to examine the behavior of P(J) as p- 1 
and /3+ co. An examination of (3.9) and (A13) shows that 

lj”:Pcj3’= al, lim P(j?) = 2 -I”. + 4-a, 

Thus, we see that P(j3) has a positive lower bound, and this completes the proof of the 
lemma. 

The behavior of u,, for /I > 1 and w > P@?) 

We now obtain a crude estimate of ) ulr - 1) in the region near the inlet, o > P(B), 
when p > 1. Lemmas Al and A2 show that for /I > 1 and LU > PQ?) we may integrate 
(3.6) along a line through the branch points, r] = Im O,, and obtain the estimate 

Iu,,- Il<C( exp(nRe#,]d& 
VII 

If o = P(p), then B,, = iv is the saddle point (3.9). Also, if w > P(p), then on y, we 
have 

Re (bh(& 0) = Re #,,(4 P(P)> - v(u - WI. 

(Here, we make explicit the dependence of #,, on both 6’ and w.) Thus, using Lem- 
mas Al and A2, for p > 1 and o > P(J) we obtain 

~uh-l~<c’n-1’2 expW&r, p(P)> - Mu - P@)>L (A14) 

with gh(ir, Pfj?)) < 0. Consequently, (u,, - l( is even smaller for w > P@) than it is 
for w = P(j?). 
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